Mapping of Landslide Prone Areas in Seki Village South Galela District North Halmahera Regency
DOI:
https://doi.org/10.52046/agrikan.v17i2.2215Keywords:
Landslides, Seki, Mapping, MitigationAbstract
Landslides often occur in Seki village. This study aims to mapping the level of landslide disaster vulnerability in Seki village, South Galela Distric. Mapping landslide-prone areas is a mitigation narrative and a reference for consideration of future regional development. This study uses the Slope Morphology method (SMORPH). Mapping using the slope tools for slope slopes and the curvature tools for slope shapes. Data analysis was carried out overlay of slope and slope shapes maps using ArcGIS 10.8 software to obtain a map of the landslide vulnerability in Seki village. Results of the research on the convex slope shape have the highest area compared to concave and flat forms, which is 1540.49 ha or 65.44%. Seki village area can be divided into two segments based on distribution of slope slopes. The slope of 0-8% dominates the central area to the northern region, the southern part is dominated by slopes of 8-15% and 15-25%. Landslide vulnerability in Seki village for the central to northern region is dominated by the very low category, the southern region is dominated by a low level of vulnerability. Level of medium and high landslide vulnerability is spread across the southern and northern regions. The distribution area of medium and high landslide vulnerability needs to be a serious concern, especially the village government and the people of Seki village.
References
Badan Nasional Penanggulangan Bencana. (2023). Buku Data Bencana. ISSN 2830-635X. Hal 5.
Badan Pusat Statistik Kabupaten Halmahera Utara. (2023). Kecamatan Galela Selatan Dalam Angka. Hal 73.
Bhunia, G. S., and Shit, P. K. (2022). Geospatial Technology for Multi-hazard Risk Assessment. Advances in Geographic Information Science. Springer, Cham (pp. 1–18).
Felita, G., Afdal, A., & Marzuki, M. (2022). Kajian suseptibilitas magnetik tanah sebagai indikator longsor di Gunung Nago, Padang. Jurnal Fisika Unand, 11(1), 75-81.
Firdaus, M. I., & Yuliani, E. (2022). Kesesuaian Lahan Permukiman Terhadap Kawasan Rawan Bencana Longsor. Jurnal Kajian Ruang, 1(2), 216-237.
Jakob, M. (2022). Landslides in a changing climate. In Landslide hazards, risks, and disasters (pp. 505-579). Elsevier.
Latue, P. C., Sihasale, D. A., & Rakuasa, H. (2023). Pemetaan Daerah Potensi Longsor di Kecamatan Leihitu Barat, Kabupaten Maluku Tengah, Menggunakan Metode Slope Morphology (SMORPH). INSOLOGI: Jurnal Sains Dan Teknologi, 2(3), 486-495.
Letedara, R., Sihasale, D. A., Huwae, F., Latue, P. C., & Rakuasa, H. (2023). Analisis Spasial Daerah Potensi Longsor di Desa Allang, Pulau Ambon Berdasarkan Slope Morphology. Larisa Penelitian Multidisiplin, 1(1), 43-49.
Manakane, S. E., Latue, P. C., & Rakuasa, H. (2023). Identifikasi Daerah Rawan Longsor Di DAS Wai Batu Gajah, Kota Ambon Menggunakan Metode Slope Morphology Dan Indeks Storie. Gudang Jurnal Multidisiplin Ilmu, 1(1), 29-36.
Mirdda, H. A., Bera, S., & Chatterjee, R. (2022). Vulnerability assessment of mountainous households to landslides: A multidimensional study in the rural Himalayas. International Journal of Disaster Risk Reduction, 71, 102809.
Muchlian, M., & Honesti, L. (2023). Tren Penelitian Tanah Longsor di Indonesia Rentang Tahun 2011-2021 Berdasarkan Analisis Bibliometrik. G-Tech: Jurnal Teknologi Terapan, 7(1), 247-254.
Muin, A., & Rakuasa, H. (2023). Spatial Analysis of Landslide Potential Using Modification of the Storie In-dex Method in the Wae Batu Gajah Watershed, Ambon City, Indonesia. International Journal of Scientific Multidisciplinary Research, 1(3), 107-116.
Pakniany, Y., Latue, P. C., & Rakuasa, H. (2023). Pemetaan Daerah Rawan Longsor di Kecamatan Damer, Kabupaten Maluku Barat Daya, Provinsi Maluku. Jurnal Altifani Penelitian Dan Pengabdian Kepada Masyarakat, 3(2), 235-242.
Rakuasa, H., Supriatna, S., Tambunan, M. P., Salakory, M., & Pinoa, W. S. (2022). Analisis Spasial Daerah Potensi Rawan Longsor Di Kota Ambon Dengan Menggunakan Metode Smorph. Jurnal Tanah Dan Sumberdaya Lahan, 9(2), 213-221.
Roccati, A., Paliaga, G., Luino, F., Faccini, F., & Turconi, L. (2021). GIS-based landslide susceptibility mapping for land use planning and risk assessment. Land, 10(2), 162.
Soeprobowati, T. R., Jumari, J., Saraswati, T. R., Suhry, H. C., & Gell, P. (2021). Land-use changes concerning the riparian vegetation in Galela Lake, North Maluku, Indonesia. Ecological Engineering, 170, 106368.
Somae, G., Supriatna, S., Manessa, M. D. M., & Rakuasa, H. (2022). SMORPH Application for Analysis of Landslide Prone Areas in Sirimau District, Ambon City. In Social, Humanities, and Educational Studies (SHES): Conference Series (Vol. 5, No. 4, pp. 11-18).
Sugandhi, N., Supriatna, S., & Rakuasa, H. (2023). Identification of Landslide Prone Areas Using Slope Morphology Method in South Leitimur District, Ambon City. Jambura Geoscience Review, 5(1), 12-21.
Tempa, K., Peljor, K., Wangdi, S., Ghalley, R., Jamtsho, K., Ghalley, S., & Pradhan, P. (2021). UAV technique to localize landslide susceptibility and mitigation proposal: a case of Rinchending Goenpa landslide in Bhutan. Natural Hazards Research, 1(4), 171-186.
Ulfa, M., Zahroh, S. A., Yuwono, A. I., & Apriyanto, B. (2023). Pengurangan Risiko Bencana Tanah Longsor Melalui Manajemen Bencana di Desa Sadu Kecamatan Soreang Kabupaten Bandung. Majalah Pembelajaran Geografi, 6(1), 36-46.
Zhou, M., Yuan, M., Yang, G., & Mei, G. (2024). Risk analysis of road networks under the influence of landslides by considering landslide susceptibility and road vulnerability: a case study. Natural Hazards Research, 4(3), 387-400.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Hendro Christi Suhry, Edom Bayau, Fridolian Sid

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.